Multi-robot Reinforcement Learning Based On Learning Classifier System with Gradient Descent Methods

نویسندگان

  • Jie SHAO
  • Jingyu YANG
چکیده

This paper proposed a robot reinforcement learning method based on learning classifier system. A Learning Classifier System is a accuracy-based machine learning system with gradient descent that combines reinforcement learning and rule discovery system. The genetic algorithm and the covering operator act as innovation discovery components which are responsible for discovering new better reinforcement learning rules. The reinforcement learning component is responsible for adjusting the fitness of rules in the system according to some reward obtained from the environment. The advantage of this approach is its accuracy-based representation, which can easily reduce learning space, improve online learning ability and robot robustness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research on Multi-robot Path Planning Methods Based on Learning Classifier System with Gradient Descent Methods

This paper deals with the problem of multi-robot path planning based on learning classifier system in a dynamic narrow environment, where the workspace is cluttered with unpredictably moving objects. A Learning Classifier System is an accuracy-based machine learning system with gradient descent that combines reinforcement learning and rule discovery system. The genetic algorithm and the coverin...

متن کامل

Robot reinforcement learning accuracy-based learning classifier systems with Fuzzy Policy Gradient descent(XCS-FPGRL)

This paper presented a novel approach XCS-FPGRL to research on robot reinforcement learning. XCS-FPGRL combines covering operator and genetic algorithm. The systems is responsible for adjusting precision and reducing search space according to some reward obtained from the environment, acts as an innovation discovery component which is responsible for discovering new better reinforcement learnin...

متن کامل

A Formal Framework for Reinforcement Learning with Function Approximation in Learning Classifier Systems

To fully understand the properties of Accuracy-based Learning Classifier Systems, we need a formal framework that captures all components of classifier systems, that is, function approximation, reinforcement learning, and classifier replacement, and permits the modelling of them separately and in their interaction. In this paper we extend our previous work on function approximation [22] to rein...

متن کامل

Reinforcement Learning in a Noisy Environment: Light-seeking Robot

Despite many promising results from the use of reinforcement learning in simulated robot worlds, its use in real robot worlds is relatively rare. This paper addresses challenges related to real robot worlds and shows how reinforcement learning combined with linear function approximation can solve many of them. Experiments are performed using a light-seeking robot built with the Lego Mindstorms ...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010